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HEAT TRANSFER BY HARTMANN’~ FLOW IN THERMAL 

ENTRANCE REGION 

ITARU MICHIYOSHI* and RY%ZHI MATSUMOTOt 

(Izeceived 7 August 1963) 

Abstract-This paper deals with a theoreticai analysis to determine the heat-tr~sfer characteristics in 
the thermal entrance region, in which an electrically conducting fluid ffows in established laminar flow 
between two parallel plates with wall heat transfer under the influence of a uniform transverse 
magnetic field, so-catled Hartmann’s flow. The conditions of wall heat transfer treated in this paper 
are both the case of prescribed uniform wait heat Aux and that of uniform wall temperature. The 
internal heat generation by Joule heating is taken into account in this analysis but the viscous dissipa- 
tion is neglected. The analytical method is analogous to that used in authors’ another paper. 

The heat-transfer characteristic-s of entrance region approach those of fully developed situation 
which were analysed by Stegel. The heat transfer by laminar flow of a non-conducting fluid which 
was analysed as a special case coincides well with those by Sellars and others. 

These numerical calculations were done by means of KDC-1 (Kyoto University Digital Computer-l). 
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one half of channel width; 
density of magnetic flux; 
specific heat at constant pressure; 
coefficient in series expansion of tem- 
perature; 
coefficient in series expansion of tem- 
perature ; 
coefficient in series expansion of tem- 
perature; 
coefficient in series expansion of tem- 
perature; 
heat-transfer coefficient ; 
circulating current density generated 
within the fluid; 
Hartmann number; 
thermal diffusivity ; 
parameter defined by equation (30); 
Nusselt number ; 
Prandtl number ; 
heat flux at wall; 
Reynolds number; 
temperature; 
veiocity of fluid; 
mean velocity of ff uid ; 
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timrtX, velocity at the centre axis, y = 0; 
co-ordinate; 
eige~~ction; 
derivative of eigenfunction (= d m/d+; 
co-ordinate. 

symbols 
pressure gradient along the channel; 
eigenvalue; 
eigenvalue; 
non-dimensional co-ordinate ( = y/a) ; 
thermal conductivity 
kinematic viscosity; 
non-dimensional co-ordinate; 
density; 
electrical conductivity ; 
eigenfunction; 
derivative of eige~unction (= d~~~d~), 

IN THE past several years, there have been many 
researches on the convective heat transfer of 
electrically conducting fluid under the influence 
of magnetic field passing through the channel, 
duct or plate, because of the necessity of the 
plating of ma~eto-hydrod~~ic generator, 
electromagnetic flow meter and so on [l-4]. 

The estab~shed laminar flow of a uniform 
conducting incompressible fluid between two 
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parallel plates under a uniform magnetic field 
which is imposed perpendicular to the bounding 
walls was studied by Hartmann and Lazarus 
and was summarized by Cowling [5]. This flow 
is so-called Hartmann’s flow, and the velocity 
profile is flattened from parabolic pattern. 

The heat-transfer characteristics by Hart- 
mann’s flow have been theoretically investigated 
by Nigam et al. [3] or Siegel et al. [4] for the 
thermal entrance region. Nigam et al. treated 
only a case of constant wall temperature which 
was suddenly changed from an another different 
constant wall temperature at certain place, and 
Siegel et al. analysed the wall temperature 
distribution of thermal entrance region under 
constant heat flux at wall. But, if there exists 
the internal heat generation within the fluid, 
the temperature distribution in the fluid has a 
very curious pattern, and moreover the relation 
between local Nusselt number and non-dimen- 
sional distance from the inlet is different from 
ordinary non-internal heat generating fluid, as 
shown in the previous paper [6]. This tendency 
will be emphasized owing to the non-uniform 
Joule heating in the conducting fluid which 
flows with Hartmann’s velocity profile. 

In this paper, the temperature distribution 
within the fluid and the local Nusselt number in 
the thermal entrance region are evaluated by 
the analogous method to the previous paper [6], 
for several kinds of wall heat transfer and for 
different values of Hartmann number. 

2. TEMPERATURE DISTRIBUTION 

In this paper, the following assumptions are 
made : 

(1) The flow is an established Hartmann’s 
flow. 

(2) The heat produced by viscous force is 
neglected. 

(3) The heat conduction in x-direction is 
neglected. 

(4) The physical properties of fluid are 
independent of temperature and are con- 
stant. 

As shown in Fig. 1, the fluid flows from 
left to right in x-direction between two plates, 
Y = a and Y = --a, with Hartmann’s velocity 
profile under the influence of uniform magnetic 

Y 

A--- I 0 

__-_ --_ _L- .- 
0 x 

I 

y=-a 

FIG. 1. Co-ordinate. 

field imposed in y-direction. By using the 
assumption (l), the relation between U, urn and 
urnax are given as follows [5] : 

u cash K - cash (KT) 

G?Z - =coshK- (l/K)sinhK’ (1) 

24 cash K - cash (Krj) 
-= 
kax coshK- 1 ’ (2) 

where K is Hartmann’s number, and it is given 

by 

In order to derive this velocity profile, it is 
assumed that the total electric current, SjZ dY, 
flowing between y = -a and y = a vanishes. 

In Fig. 1, the thermal entrance region starts 
from x = 0 and there exist both wall heat 
transfer and Joule heating in the region of 
x > 0, then the equation of heat flow may be as 
follows: 

(4) 

where jz/u is the internal heat source due to the 
electrical dissipation and the circulating current 
density j, is given by 

jz=$ l-“~~t~‘. 
[ I (5) 

0 

2.1. Unifbrm heat flux at wall 
The problem can be separated into the follow- 

ing two simpler cases: 

(1) A case having Joule heating with insulat- 
ing wall ; 

(2) A case having no internal heat generation 
due to Joule heating but uniform heat 
transfer q at wall. 
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If the temperatures are defined by T, and T4, where F(y) is a function of y alone and shows 
respectively, the equations for problem (1) and the temperature profile of fully developed 
(2) are as follows: situation. Substitution of equation (12) into 

equation (9) gives F’(T), that is 

(1) uaT,=k @T, 

ax ,-+-$-$. (6) Ftrlj = (RePrYvk sinh K 2 

Boundary conditions: 
a2cp 

x=0: To=O,y=O: aT$ay=O,y=a: ([ K 
-1+ 

aiyay = 0. 
2 sinh2 K 

(2) 
arfJ azTq 

u--k-. ax ay2 (7) 

(qa/2) cash K - (1/K2) cosh(K7) 
cash K - (l/K) sinh K 1 

Boundary conditions : 

x =0: Tq =O, y =O: aT,/ay =O, y =a: 

aT,/ay = --q/h. 

1 

T2 2 cash (KT) K* v2 - --- 
2 K sinh K ’ 2 smh2 K ?? 

+4+2cosh(2Kd (13) 

The solution T of equation (4) can be written 
as follows, by virtue of linear equation: 

In order to determine the temperature in the 
entrance region, it is convenient to define a 

T = To + Tq. (8) temperature T,+ as follows: 

In this section, the fluid temperature is defined 
as the excess temperature over the value at 
x = 0. 

2.1 .l. Insulated wall with Joule heating within 
thefluid. Consider the fully developed situation. 
If the fluid temperature is designated by TQ, 
in this situation, Tom becomes 

(9) 

Using equation (9) and the mixed-mean tempera- 
ture T,, 

Tm = j-“-a T” dv 
jXa u dy ’ (10) 

the following equation can be obtained : 

T, = Tam + T&. 

Then, equation (6) yields 

(14) 

u_&ka% aT+ 

ax ay2 a (15) 

Boundary conditions : 

x = 0: T& = 0, y = 0: aT@y = 0, y = a: 

aTgay = 0. 

By using the following Reynolds number Re 
and Prandtl number Pr, 

Re = urna&, 

Pr = cLl(pk), (16) 

the solution of equation (15) can be expressed 
as follows : 

arm aT,m _-=--- 
ax ax ’ (11) T’ = (Re Pr)2vk 

Q a$ 
Therefore, by using equations (3) and (5), 
T,, is obtained as follows: 

T,, = 
aza2x &?_!.-“~ 

RePr a (18) 

Urnp’Cpv 
And, fin and Yn are eigenvalues and eigen- 
functions, respectively, of the following Sturm- 
Liouville type differential equation, 
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Boundary conditions : 

s=O: Y;=dY,/d7=0,rl=1: Y;=O. 

From the condition of T$ = 0 at x = 0 in 
equation (15), the coefficients C, are 

Cn = - 

c, = - 

These numerical calculations were done by the 
digital computer KDC-1 (Kyoto University 
Digital Computer-l) [6]. 

Table 1. Eigenvalues and eigenfunctions at waif 
__= 

Authors’ values Siegel’s values 
n Bn Y?&(l) B”’ Y,(l) 

K=Ol 184986 
2 694087 
3 1525951 
4 268.0768 
5 416.6615 

- 1.2708 
14035 

-1.4931 
1.5612 

-1.6241 

K=41 14.8752 -1.1528 
2 56.8958 1.2579 
3 125.7058 -1.3304 
4 221.3816 1.3868 
5 341.3523 -1.4285 

18.3083 - 1.2697 
68.9517 14022 

151551 -1.4916 
266.163 1*5601 
412,783 -1.6161 

14.7866 -1.1520 
565509 1.2569 

1249158 - 1.3294 
219.8498 1.3856 
341.3385 -1.4319 

K=8 1 12.5923 - 1.0660 
5 49.0872 1.1448 
3 108.9721 -1.2037 
4 192.2326 1.2505 
5 410.5202 -1.3712 

______ ____ -7 

The eigenvalues, ,&, and eigenfunctions at 
wall, Yn(l), are tabulated in Table 1. In order 
to compare our results with Siegel’s values [4], 
their results multiplied by (2/3)(umsx/um) are 
shown in this table [Appendix], since equation 
(19) is different from the equation used by Siegel 
and others. In this table, our values agree well 
with Siegel’s values. 

FIG. 2. Fluid temperature with Joule heating and no 
heat flow through the wall (K = 4). 

Fig. 2 shows the fluid temperature distribution 
for K = 4, as one example, at various positions, 
‘!. 

2.1.2. Uniform wall heat jlux without Joule 

heating. Let us consider the fully developed 
region having a defined temperature, Tqm. 

Equation (7) becomes 

aT,m 
uT =kF, (21) 

If the heat flux has a constant value at wall, 
the following equation can be obtained: 

aTqc0 aT, 4 1 -=--_ 
ax ax a pepurn (22) 

(q > 0 for heat release from the fluid). 
Then, Tgm yields 

Tgm = - 4 a -&; + G(Y). (23) 

By substituting this equation into equation (21), 
the following relation is obtainable : 

U 4 d8G _- _-= 
Urn apt, kdya. 
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Hence, 

G(7) = -y 

(q2/2) cash K - (l/P) cash (Kn) + D 
cash K - (l/K) sinh K 

0 . 1 
(24) 

In order to determine the temperature in the 
thermal entrance region, the following tempera- 

s 

ture, T,‘, is introduced : 
I 

Tg * T,’ + Tqm. (25) P 

Substituting this into equation (7) and applying 
equation (23), the following relation is obtain- 
able : 

u aTq+ _ k a2T,t 

ax ay2' (26) 

Boundary conditions : 

x = 0: T,’ = 0, y = 0, y = a: aT,+/ay = 0. 

Since this differential equation and boundary 
conditions are identically equal to equation (15), 
the above mentioned eigenvalues and eigen- 
functions are also valid in this case. Thus, 

co 

T,‘=yyD,Y,exp 

k? 
(-Et%“). (27) 

From the characteristics of Sturm-Liouville 
differential equation and the condition of 
Tz = 0 at x = 0, the coefficients Dn can be 
calculated by the following relations, 

An example of the fluid temperature distribu- 
tion is illustrated for K = 4 in Fig. 3. 

2.1.3. Joule heating with wall heat transfer 
(uniform wall heat Jlux). By using equation (8), 
the resultant temperature can be calculated as 
follows : 

FIG. 3. Fluid temperature distribution with uniform 
heat transfer through the wall and no Joule heating 

(K = 4). 

fl=l 

B.e) +ys DnYn exp (-sfd). (29) 
n=l 

In Fig. 4, the temperature distributions for 
K = 4 and 8 at .$ = 0, 0.03 and infinity are 
illustrated. In this figure, M is a parameter 
which is given by the following formula: 

M = (Re Pr)2vkX 

a2cpqa ’ (30) 

2.2. Uniform wall temperature 
If the inlet temperature at x = 0 is denoted 

by To and the wall temperature is assumed to 
be equal to zero, the problem is divided into 
two simpler problems as follows: 

(3) A case having Joule heating and zero inlet 
temperature. 

(4) A case having no Joule heating but an 
arbitrary inlet temperature To. 

In this section, the fluid temperature is 
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7 

FIG. 4. Fluid temperature distribution in the thermal 
entrance region under uniform heat flux at wall. 

defined as the excess temperature over the value 
at wall. If each solution can be written as TH and 
Th, respectively, the solution of general problem 
yields 

T = TfI + Th. (31) 

And the equations for problem (3) and (4) are as 
follows : 

(3) 
aTH a2TH jz 1 u---=k-- 
ax ay2 + 0 c,p' (32) 

Boundary conditions : 

~~0: T~=0,y=0: aTHlay-O,y=a: 

TIr = 0. 

(4) u - &CT. aTh 2 h 
ax ay2 . (33) 

Boundary conditions : 

x=0: Th=To,y=o: aTh/ay=O,Y=U: 

Th = 0. 

2.2.1. Zero inlet temperature with Joule heating. 
Considering the fully developed region, since 
the temperature profile is kept constant pattern, 
the fluid becomes isothermal in x-direction. 
Then, equation (32) can be transformed into 

k 

This equation can be integrated as follows: 

THoo _ (Re Wvk 
i 

sinh K 2 

a2cP - cash K - (l/K) sinh K 

q2 2 cash (KT$ + ~ K2 

[ 

y2 -- 
2 K sinh K 2sinh2 “i 

+ k2cosh (~KT) 1 - ; + ;;;; ; 

- 2&K ; + 4+2cosh (2K) . 
To determine the thermal entrance 
temperature Tj$ is introduced, 

T=T$ + THY. 

(35) 

region, a 

(36) 

Then, the fundamental equation (32) is trans- 
formed into 

u aTH _kf?Td 
ax ap . (37) 

Boundary conditions : 

y=o: aTA/ay-O,y=a: Th -0. 

The solution of this equation can be expressed 
as follows : 

T+ = (Re Pd2vk 
H a2cp 

-$_f$& exp(-~~~~), 

II=1 

(38) 
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where yn and & are the eigenvalues and eigen- 
functions, respectively, of the following Sturm- 
Liouville type differential equation, 

Boundary conditions : 

~=0: d$,/d~=O,l=l: &=O. 

And the coefficients En are expressed as follows 
by the characteristics of Sturm-Liouville equa- 
tion and the condition of T& = 0 at x = 0: 

s 1 THCO 

En = - 
,, ’ [(Re Pr)%k]/a2& ‘la drl 

S; u#; drl * 
(4) 

These numerical calculations were done by the 
digital computer KDC-1. The eigenvalues for 
several kinds of K are tabulated in Table 2. 
Tn the case of K = 0 which means Newtonian 

Table 2. Eigenvalues 
-- - 

n Authors’ values Sellars’ values 

K=O 1 2.8447 2.779 
2 32.3546 32.11. 
3 94.0990 93.45 
4 188.1117 186.90 
5 314.3100 312.20 

K=4 1 2.6390 
2 27.1269 
3 78.3049 
4 156.2148 
5 261.0073 

K=8 1 25201 
2 23.9883 
3 68.6067 
4 136.5288 
5 227.6907 

flow, ‘yn agrees well with the values by Sellars 
et al. [7]. Fig. 5 shows the temperature distribu- 
tion at several kinds of 5‘. 

2.2.2. Arbitrary inlet temperature without Joule 
heating. Since the fluid flows with wall heat 
transfer under the condition of TW = 0, the 
fluid temnerature. in the fullv develooed 

, I,.- 1 I I I 

3 0.2 0.4 0.6 0.E I.0 

7 

FIG. 5. Fluid temperature distribution with Joule 
heating and the same inlet temperature as the wall 

(K = 4). 

region becomes Thm = 0. And introducing the 
temperature, Thf , in the thermal entrance region, 

Th = Thf + Th,, (41) 

the fundamental equation (33) yields 

aT,t- u--=ka$, 
ax (42) 

Boundary conditions : 

y = 0: aT;/ay = 0, y = a: Th+ = 0. 

Since this equation has the same formula and 
the same boundary conditions as equation (37), 
Th+ can be expressed as the infinite series by 
using the above mentioned eigenvalues yn and 
eigenfunctions &. 

cc 
Th+ TO 

(Re Pr)2vk = (Re Pr)2vk 
--~ 

a2cp a2cp 
n=l 

(43) 

And the coefficients Fn are given by considering 
the boundary condition, Thf = T, at x = 0, 

An example of the temperature distribution is 
shown in Fie. 6. 
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0 0.2 0.4 06 0.8 I.0 

77 

FIG. 6. Fluid temperature distribution with no Joule 
heating under (r, - T,)/(Re Pr)%k/dcp = 1. (K = 4). 

2.2.3. Joule heating with wall heat transfer 
(uniform wall temperature). From equation (31), 
the resultant temperature can be written as 
follows : 

The fluid temperature distribution calculated 
is shown in Fig. 7. 

3. NUSSELT NUMBER 

Now consider the following hea t-transfer 
coefficient h, 

h=_’ 
Tm ?T,’ (46) 

And local Nusselt number NU is defined as 
follows: 

(47) 
In the case of uniform wall heat flux, the mixed- 
mean temperature Tm is 

1 
T,= ~- ( J “&_! 1 x. 

aumcpp 0 0 a UmCpp 1 
(48) 

O-2 

0.1 

c 

- K=4 

0.2 O-4 0;6 I.0 

7 

FIG. 7. Fluid temperature distribution in thermal 
entrance region under uniform wall temperature. 

And Tm - TW is given by the following equation, 

Tm - Tw = - F(1) - G(1) - 

(Re Pr)2 vk 

a2cp c 
n-l 

m 

v -- 7 A/_ &m(l) exp (- ES&). (49) 
?I=1 

Consequently, Nusselt number Nu, becomes 
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If the Joule heating is neglected, the Nusselt number Nu, is 

Nu; = - ~- ~a~~ 
* 

G(1) +~~D,Y,(l)exp(-~~~Bn6) 

n-1 

In the case of uniform wall temperature, Tm - Tw is 

and 
SZ=I 

q = - X(aT/ay),=a. 

Hence, Nusselt number Nu, is 

m 

2 
F &(l) 

n-exp (- ~%2)}. 
Yn 

?I=1 

(52) 

(53) 

(54) 

If the Joule heating is neglected, Nusselt number 
A$ is 

to 

Fig, 8 shows the relation between local Nusselt 

number and 5, in the case of no Joule heating. 
In this figure, the full lines show the uniform 
heat flux and the dotted lines the uniform wall 
temperature. Moreover, the case of K = 0 is 
equivalent to non-conducting Newtonian fluid 
flow and the calculated values coincide well 
with Sellars et al. [7]. Fig. 9 represents the 
relation between local Nusselt number and ;4 
under uniform heat flux. Fig. 10 shows the case 
of uniform wall temperature. As compared with 
these figures, it should be noted that the Joule 
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FIG. 10. Local Nusselt number under uniform wall 
heating. temperature. 

2 

5.0 

FIG. 8. Local Nusselt number in the case of no Joule 

FIG. 9. Local Nusselt number 
under uniform heat flux. 



HEAT TRANSFER BY HARTMANN’S FLOW IN THERMAL ENTRANCE REGION 111 

heating affects so severely the heat transfer that 4. 
it must not be ignored. Of course, the effects 
of K, M and T,/[(Re Pr)%k/a2cp] on the heat 
transfer must be taken into consideration. 5. 

4. CONCLUSION 6. 

An analysis was made to determine the heat 
transfer by Hartmann’s flow under the con- 

7 
’ 

ditions of uniform wall heat flux and uniform 
wall temperature. Though it is necessary to 
calculate numerous eigenvalues and eigen- 
functions in order to analyse more precisely the 
heat transfer near the inlet, the results obtained 
in this paper will be undoubtedly applicable to 
the convective heat transfer in the thermal 
entrance region. 
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APPENDIX 

Equation (19) is rewritten here, 

d$+P.&x Y, = 0. (19) 

REFERENCES 
Instead of the above equation, Siegel et al. used 

1. R. SIEGEL, Effect of magnetic field on forced con- 
the following equation: 

vection heat transfer in a parallel plate channel, 
J. Appl. Mech. 25, 415 (1958). 

d2Y, 2 

2. R. A. ALPHER, Heat transfer in magnetohydrodynamic 
w + 3 Bn Siegel z Y72 = 0. (56) 

flow between parallel plates, Znt. J. Heat Mass Tram- 
fer, 3, 108 (1961). 

Thus , 

3. S. D. NIGAM and S. N. SINGH, Heat transfer by 
laminar flow between parallel plates under the action (57) 
of transverse magnetic field, Quart. J. Mech. Appl. 

(& Siegel) tiz) = &. 

Math. 13, 85 (1960). the values of /3: are tabulated in Table 1. 

Rbu&-Cet article concerne une etude theorique de la determination des caracteristiques des 
&changes thermiques dans la zone dent& (mise en equilibre thermique) dans le cas d’un ecoulement 
laminaire de fluide, Clectriquement conducteur, entre deux plaques paralleles, avec echange de chaleur 
a la paroi, et soumis a un champ magnetique transversal; cet ecoulement est appele ecoulement de 
Hartmann. 

Les conditions d’echanges thermiques a la paroi consideres ici sont a la fois celles correspondant 
a un flux de chaleur pa&al uniforme et celles dune temperature de paroi uniforme. On tient compte 
dam cette etude de la production d’energie inteme par effet Joule, mais on neglige la dissipation 
visqueuse. 

La methode analytique utilisee est analogue a celle choisie par les autres auteurs. 
Les caractbistique thermiques de la region de mise en Bquilibre se rapprochent de celles ttudiees par 

Siegel pour le regime etabli. Les echanges thermiques dam le cas de l’ecoulement d’un fluide non 
conducteur, etudie en tant que cas particulier, coincident bien avec les resultats de Sellar et des autres. 

Ces calculs numeriques ont Cte faits sur la calculatrice KDC-1 de l’universite de Kyoto. 

Zusanunenfassung-Die Arbeit umfasst eine theoretische Analyse zur Bestimmung der Warmefiber- 
gangscharakteristik im thermischen Anlaufbereich einer elektrisch leitenden Fliissigkeit bei sogenann- 
ter Hartmannstromung. Das Medium strijmt dabei, laminar ausgebildet, zwischen zwei parallelen 
Platten, an welchen, unter dem Einfluss eines einheitlichen magnetischen Querfeldes, ein Wlrmeuber- 
gang erfolgt. Der Wtirmeiibergang ist sowohl fur den Fall gleichbleibender Warmestromdichte von der 
Wand, als such konstanter Wandtemperatur untersucht. Die innere Joule’sche Warmeerzeugung ist in 
der Analyse berticksichtigt, nicht jedoch die viskose Dissipation. Die analytische Methode ist analog 
der vom Autor in anderen Arbeiten benutzten. 

Die Charakteristika fiir den Warmeiibergang im Emlaufgebiet nahem sich jenen der voll ausge- 
bildeten Stromung, die Siegel analysierte. Der Warmetibergang bei laminarer Stromung eines nicht- 
leitende Mediums, der als Spezialfall analysiert wurde, stimmt gut mit Ergebnissen von Sellam und 
anderen iiberein. 
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Die numerischen Rechnungen wurden mit Hilfe des KDC-1 (Kyoto University Digital Computer-l) 
ausgefiihrt. 

~EHOT~~~~-~ cTaTbe RaeTcFi TeopeT~~ecK~~ affaJw3 0~pe~e~eH~~ xapaKTep~cT~~ nepe- 

uoea Ha Bxo~K~M ysaCTKe Harpesa np~ ycTaHoR~BmeMca ~~a~~HapH0~ ~e~ie~~t~ sjlel{Tpo- 

r~poso~~ott ~E~KOCTH memgy g~y~fl fiapawxeJrbHbiMz4 naacTMHaMA, rtorfia neperfoc TeKJIa 

Ha CTeHKe IIpOMCXOfiHT IIOfi BJIPRHIleM IlOCTOFlHHOrO ~OIIepeVHO~O EOJIJf (TaK Ha3bIBaeMOe 

Teqewie XapTMawa). B CTaTbe paccMaTpanaIoTcsf cneaylouwie ycnoerfn nepewoca Terrna HR 

CTeHKe: l&M 3&!@HHOM IIOCTORHHOM TeIIJlOBOM IIOTOKe Ha CTeHKe M IIpll IIOCTOlfHHOit TeM- 

nepaType CTeIwn. AffanEza BexeTcFf c ~~BTOM gwoynesa Terrna. BaaKoti ~EccHnar~kceti npe- 

fieRperaeTCR.AHaxi?TllueCKM~ MeTOg BHEUIOl?iVeH ~eTO~y,~C~O~b3yeMO~fy ElBTOpOM B@QVO‘il 

cro pa6oTe. 

Xapa~Tep~cT~l~~ nepeuoca TerrjIa Ha ~xo~~~oM yqacwe 6,,3I;i$ Ii XapaIzTep~cT~~~aM no- 
nHoc,TbIo pa3nwroro Tesenafl-cnyrati, paccMoTpeminfi CaiwejreM. IIepeHoc Tenjla npki 

~~aM~HapIIOMTe4eHI?IIHe3~eI;TpOII~OBO~HO~~KH~KOCTM,paCCMoTpeHHhl~~IE3K~laCTIlbI~C~~ia~, 

ronna~aeT co CJIy~faRMEI, IIpOaHaJIW?HpOBaHHbIMII CeJInapCOM M ApyI'MMH. 

3~14 'fwJIeHHhIe p?csc~b~ IIpOIi3BO~l4JIECb C IIOMOYJ.&bH) K,QC-1 (l.W@pOBOti BbIFfHCJIIiTeJIbHOti 
MaIfIHHhE YHPiBepCKTeTa )EHOTO MOReJIll 1). 


