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Abstract—This paper deals with a theoretical analysis to determine the heat-transfer characteristics in
the thermal entrance region, in which an electrically conducting fluid flows in established laminar flow
between two parallel plates with wall heat transfer under the influence of a uniform transverse
magnetic field, so-called Hartmann’s flow. The conditions of wall heat transfer treated in this paper
are both the case of prescribed uniform wall heat flux and that of uniform wall temperature. The
internal heat generation by Joule heating is taken into account in this analysis but the viscous dissipa-
tion is neglected. The analytical method is analogous to that used in authors’ another paper.

The heat-transfer characteristics of entrance region approach those of fully developed situation

which were analysed by Siegel. The heat transfer by laminar flow of a non-conducting fluid which
was analysed as a special case coincides well with those by Sellars and others.

These numerical calculations were done by means of KDC-1 (Kyoto University Digital Computer-1).

NOMENCLATURE
one half of channel width;
density of magnetic flux;
specific heat at constant pressure;
coefficient in series expansion of tem-
perature;
coefficient in series expansion of tem-
perature;
coefficient in series expansion of tem-
perature;
coefficient in series expansion of tem-
perature;
heat-transfer coefficient;
circulating current density generated
within the fluid;
Hartmann number;
thermal diffusivity;
parameter defined by equation (30);
Nusselt number;
Prandtl number;
heat flux at wall;
Reynolds number;
temperature;
velocity of fluid;
mean velocity of fluid;

* Professor, Department of Nuclear FEngineering,
Kyoto University, Kyoto, Japan.

1 Assistant Professor, Department of Mechanical
Engineering, Kobe University, Kobe, Japan.

umax, velocity at the centre axis, y = 0;
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co-ordinate;

eigenfunction;

derivative of eigenfunction (= d Y»/dn);
co-ordinate.

Greek symbols

@,

G’
¢Zb
b

pressure gradient along the channel;
eigenvalue;

eigenvalue;

non-dimensional co-ordinate (= y/ag);
thermal conductivity

kinematic viscosity;

non-dimensional co-ordinate;
density;

electrical conductivity;

eigenfunction;

derivative of eigenfunction (= dy,/dn).

1. INTRODUCTION

IN THE past several years, there have been many
researches on the convective heat transfer of
electrically conducting fluid under the influence
of magnetic field passing through the channel,
duct or plate, because of the necessity of the
planning of magneto-hydrodynamic generator,
electromagnetic flow meter and so on [1-4].

The established laminar flow of a uniform
conducting incompressible fluid between two
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parallel plates under a uniform magnetic field
which is imposed perpendicular to the bounding
walls was studied by Hartmann and Lazarus
and was summarized by Cowling [5]. This flow
is so-called Hartmann’s flow, and the velocity
profile is flattened from parabolic pattern.

The heat-transfer characteristics by Hart-
mann’s flow have been theoretically investigated
by Nigam et al. [3] or Siegel et al. [4] for the
thermal entrance region. Nigam et al. treated
only a case of constant wall temperature which
was suddenly changed from an another different
constant wall temperature at certain place, and
Siegel et al. analysed the wall temperature
distribution of thermal entrance region under
constant heat flux at wall. But, if there exists
the internal heat generation within the fluid,
the temperature distribution in the fluid has a
very curious pattern, and moreover the relation
between local Nusselt number and non-dimen-
sional distance from the inlet is different from
ordinary non-internal heat generating fluid, as
shown in the previous paper [6]. This tendency
will be emphasized owing to the non-uniform
Joule heating in the conducting fluid which
flows with Hartmann’s velocity profile.

In this paper, the temperature distribution
within the fluid and the local Nusselt number in
the thermal entrance region are evaluated by
the analogous method to the previous paper [6],
for several kinds of wall heat transfer and for
different values of Hartmann number.

2. TEMPERATURE DISTRIBUTION

In this paper, the following assumptions are
made:

(1) The flow is an established Hartmann’s

flow.

(2) The heat produced by viscous force is
neglected.

(3) The heat conduction in x-direction is
neglected.

(4) The physical properties of fluid are
independent of temperature and are con-
stant.

As shown in Fig. 1, the fluid flows from
left to right in x-direction between two plates,
y =a and y = —a, with Hartmann’s velocity
profile under the influence of uniform magnetic
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Yy -a
Fic. 1. Co-ordinate.
field imposed in y-direction. By using the

assumption (1), the relation between u, u, and
Umax are given as follows [5]:

u _ cosh K — cosh (Kn)
tm cosh K — (1/K)sinh K’

u  cosh K — cosh (Kn)
cosh K — 1 ?

M

@

Umax

where K is Hartmann’s number, and it is given

by
a
K = J (—) aB,
pv

In order to derive this velocity profile, it is
assumed that the total electric current, | j.dy,
flowing between y == —a and y = a vanishes.

In Fig. 1, the thermal entrance region starts
from x =0 and there exist both wall heat
transfer and Joule heating in the region of
x > 0, then the equation of heat flow may be as
follows:

3)

oT 2T 1 ]_g

ox o pep

U s
pCp ©

4
where j2/o is the internal heat source due to the
electrical dissipation and the circulating current
density j; is given by

©)

K cosh (Kv)
- sinhK

. a 1
Jz—E

2.1. Uniform heat flux at wall
The problem can be separated into the follow-
ing two simpler cases:

(1) A case having Joule heating with insulat-
ing wall;

(2) A case having no internal heat generation
due to Joule heating but uniform heat
transfer ¢ at wall.
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If the temperatures are defined by T, and T,
respectively, the equations for problem (1) and
(2) are as follows:

aT, 2T, 1 j?

0)) ok Tk + o o (6)

Boundary conditions:
x=0:Teg=0,y=0: 0Tq/oy =0,y =a:

8T /0y = 0.
oT, &2T,

Boundary conditions:
x=0: Ty=0,y=0: 0T /oy =0,y =a:
oTofoy = —g/ .

The solution T of equation (4) can be written
as follows, by virtue of linear equation:

T=T,+ T, (8)

In this section, the fluid temperature is defined
as the excess temperature over the value at
x=0.

2.1.1. Insulated wall with Joule heating within
the fluid. Consider the fully developed situation.
If the fluid temperature is designated by Tge
in this situation, 7y becomes

JTon _ PTge 12
ox ay? pcp o

®

Using equation (9) and the mixed-mean tempera-
ture T,

_ fe,Tudy
the following equation can be obtained:

T oo  Tm 1 “J3
0x  6x  aumcpp (L;dy). (1

Therefore, by using equations (3) and (5),
T yo is obtained as follows:

ala®x [ 1 1

Tow = umpicpv | K2 + 2K sinh® K

(K + % sinh ZK)J + F(»), (12)
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where F(y) is a function of y alone and shows
the temperature profile of fully developed
situation. Substitution of equation (12) into
equation (9) gives F(), that is

(RePr)?vk sinh K 2
accy (cosh K — (1/K)sinh K

F(p) =

([— 14 2-55(_112—12(1(' -+ %sinhZK)]
(%?%/2) cosh K — (1/K?) cosh(K7)
[ cosh K — (1/K) sinh K ]

n% 2 cosh (Ky)
|2 Ksinhk

+ 411<2 cosh (2Kn) J }) + Co} (13)

In order to determine the temperature in the
entrance region, it is convenient to define a
temperature 75 as follows:

K [yt
2snh? K |2

+

Ty,=Town+T}. (14
Then, equation (6) yields
6T TS
8x =k T (15)

Boundary conditions:
x=0:T;=0,y=0: oT}/oy =0,y = a:
oT/oy = 0.

By using the following Reynolds number Re
and Prandt] number Pr,

Re = umaplu,
Pr = p/(pk), (16)

the solution of equation (15) can be expressed
as follows:

Re Pr)?
s OLPS non (2
a7
1 x
ngePr a (18)

And, B, and Y, are eigenvalues and eigen-
functions, respectively, of the following Sturm—
Liouville type differential equation,
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a2y,
dn?
Boundary conditions:
n=0: Y =dYp/dy=0,7=1: Y, =0.
From the condition of 75 =0 at x =0 in
equation (15), the coefficients C, are
! F(n) — C, ]
Co = IR e
T JluY2dy
lu F (’7) — Gy d
. — _ Jo_ (Re Privki(aicy) K
°e= Jiudny ’

These numerical calculations were done by the
digital computer KDC-1 (Kyoto University
Digital Computer-1) [6].

u
+Bn“““ Yn =0.
ax

Um

(19)

(20)

~

Table 1. Eigenvalues and eigenfunctions at wall

Authors’ values Siegel’s values

n Bn Ya(1) B’ Ya(D)
K=01 184986 —1-2708 18-:3083 —1-2697

2 69-4087 1-4035 68-9517 1-4022

3 152-5951 ~—1-4931 151-551 —1-4916

4 2680768 1-5612 266-163 1-5601

5 4166615 —1-6241 412783 —1-6161
K=41 14-8752 —1-1528 14-7866 —1-1520

2 56-8958 1-2579 56:5509 1-2569

3 1257058 —1-3304 124-9158 —1-3294

4 221-3816 1-3868 219-8498 1-3856

5 3413523 —1-4285 341-3385 —1-4319
K=281 12-:5923 —1-0660

5 490872 1-1448

3 1089721 —1-2037

4 192-2326 1-2505

5 4105202 —1-3712

The eigenvalues, 8,, and eigenfunctions at
wall, Y,(1), are tabulated in Table 1. In order
to compare our results with Siegel’s values [4],
their results multiplied by (2/3)(¥max/um) are
shown in this table [Appendix], since equation
(19) is different from the equation used by Siegel
and others. In this table, our values agree well
with Siegel’s values.
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Fic. 2. Fluid temperature with Joule heating and no
heat flow through the wall (K = 4).

Fig. 2 shows the fluid temperature distribution
for K = 4, as one example, at various positions,

£

2.1.2. Uniform wall heat flux without Joule
heating. Let us consider the fully developed
region having a defined temperature, Tje.
Equation (7) becomes

e _ 8 Tem

ox oy? @1

If the heat flux has a constant value at wall,
the following equation can be obtained:

g0 0T q 1

B> T ax  a poum P
(g > O for heat release from the fluid).
Then, Tye yields
1 _ X
Tuo == 4 2o+ GO). (23)

By substituting this equation into equation (21),
the following relation is obtainable:
u q

u 9 _, ¥
" um apcy = dy¥
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Hence,

G(n) = —q—;

(92/2) cosh K — (1/K?) cosh (K7)
[ cosh K — (1/K) sinh K

-0
(29

In order to determine the temperature in the
thermal entrance region, the following tempera-
ture, T, is introduced:

Ty =T+ + Tew. 25)

Substituting this into equation (7) and applying
equation (23), the following relation is obtain-
able:

oT: T+
UGk =k (26)

Boundary conditions:
x=0:Tf=0,y=0,y=a: oT;/dy =0.

Since this differential equation and boundary
conditions are identically equal to equation (15),
the above mentioned eigenvalues and eigen-
functions are also valid in this case. Thus,

a
T; =% Dy Yuexp (—
Lt

n=1

o ﬁnf)- @7

From the characteristics of Sturm-Liouville
differential equation and the condition of
T/ =0 at x =0, the coefficients D, can be
calculated by the following relations,

Lu [q%g — Da] Yady
Do == uviay
L (6 e
D. — Lu [qa/)\ Do] d
T joud") ) J

An example of the fluid temperature distribu-
tion is illustrated for K = 4 in Fig. 3.

2.1.3. Joule heating with wall heat transfer
(uniform wall heat flux). By using equation (8),
the resultant temperature can be calculated as
follows:

0-6 T
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Fig. 3. Fluid temperature distribution with uniform

heat transfer through the wall and no Joule heating
(K =4,

_( 1 “J'%d g _1 4R
~ \aumepp Jo Y a UmCpp ¥ )

+G()+(—R‘e‘ﬂ3‘vfzcnyne7(p(_

n=1

max

«©

an) + q;z Dy Yy exp (—

n=1
In Fig. 4, the temperature distributions for
K=4 and 8 at ¢ =0, 003 and infinity are
illustrated. In this figure, M is a parameter
which is given by the following formula:
(Re Pr)*vkA
T aPcpqa

“":X ﬁnf). (29)

(30)

2.2. Uniform wall temperature
If the inlet temperature at x = O is denoted
by T, and the wall temperature is assumed to
be equal to zero, the problem is divided into
two simpler problems as follows:
(3) A case having Joule heating and zero inlet
temperature.
(4) A case having no Joule heating but an
arbitrary inlet temperature 7.

In this section, the fluid temperature is
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Fic. 4. Fluid temperature distribution in the thermal
entrance region under uniform heat flux at wall.

defined as the excess temperature over the value
at wall. If each solution can be written as Ty and
T}, respectively, the solution of general problem

yields
(31

And the equations for problem (3) and (4) are as
follows:

T=Tyg+ Th.

2Ty
oy?

j2

22
g

0Ty

1

©))
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Boundary conditions:
x=0:Tg =0,y =0: 8Ty/oy =0,y = a:

Ty =0.
aTh 32Th
4 —
@ 8x 8y (33)
Boundary conditions:
x=0:Tph="Toy=0: 0Tp/0y =0,y = a:

Ty = 0.

2.2.1. Zero inlet temperature with Joule heating.
Considering the fully developed region, since
the temperature profile is kept constant pattern,
the fluid becomes isothermal in x-direction.
Then, equation (32) can be transformed into

oy?  Cpp

o Cpp
This equation can be integrated as follows:

k + = 0. (34)

P Pr)?vk sinh K 2
Ho = =" g2c, \coshK — (I/K)sinh K
n2 2 cosh (Kn) K? 27—2
2 Ksinh K ' 2sinh? K| 2
| 1 2 cosh K
4o e ;cosh (2Kn)] + Ksinh K
S L
S - [2 . e cosh (2K)]} (35)

To determine the thermal entrance region, a
temperature T3 is introduced,

T =T} + Tro.

Then, the fundamental equation (32) is trans-
formed into

(36)

AL &)
Boundary conditions:
y=0: oT,joy =0,y =a: T, =0.
The solution of this equation can be expressed
as follows:
MUY/
" (38)
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where y, and 5, are the eigenvalues and eigen-

functions, respectively, of the following Sturm-

Liouville type differential equation,
d*, u

d—’72+ ‘)’num—axlﬁn =0. (39

Boundary conditions:

And the coefficients E, are expressed as follows
by the characteristics of Sturm-Liouville equa-
tion and the condition of T}, = 0 at x = 0:

1 T Hwo lp d

B o “[(Re Privkjatc, 7 "
" J5 wp dn ’
These numerical calculations were done by the
digital computer KDC-1. The eigenvalues for

several kinds of K are tabulated in Table 2.
In the case of K = 0 which means Newtonian

(40)

Table 2. Eigenvalues

Authors’ values  Sellars’ values

3

2:8447
32:3546
94-0990

188:1117
314-3100

2779
3211
93-45

18690
312:20

(. VN O

K=4 2:6390
27-1269
78-3049

156-2148

261-0073

wnoph W N =

K=38 2-5201
23-9883
68-6067

136-5288

227-6907

N W -

flow, v, agrees well with the values by Sellars
et al. [7]. Fig. 5 shows the temperature distribu-
tion at several kinds of £.

2.2.2. Arbitrary inlet temperature without Joule
heating. Since the fluid flows with wall heat
transfer under the condition of T, = 0, the
fluid temperature, The, in the fully developed

ovs\’\
o4
=0
aQ
;‘\2 03 i
I
|
T N /€=0'15
- Q
&. 02 | \ N
o ke €7 006 \\
_—£:0:03
_\_/
/.E=O i
0 02 04 06 08 0

7
Fic. 5. Fluid temperature distribution with Joule
heating and the same inlet temperature as the wall
(K = 4).

region becomes Tho = 0. And introducing the
temperature, T, in the thermal entrance region,

Th =T + Tho, (41)
the fundamental equation (33) yields
Ty AT

Boundary conditions:
y=0:0Tjoy =0,y =a: T;f =0.

Since this equation has the same formula and
the same boundary conditions as equation (37),
T, can be expressed as the infinite series by
using the above mentioned eigenvalues y, and
eigenfunctions .

T+ T, <
(Re Pr*vk — (Re Pri*vk z Fufn
T aPep atc, !
u
exp (— i ynf). (43)
Umax

And the coefficients F, are given by considering
the boundary condition, T} = T, at x =0,
. J§ whn dn

5w dn’

An example of the temperature distribution is
shown in Fig. 6.

F, (44)
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Fi1G. 6. Fluid temperature distribution with no Joule
heating under (To — T.)/(Re Pr)*vkjatcp = 1. (K = 4).

2.2.3. Joule heating with wall heat transfer
(uniform wall temperature). From equation (31),
the resultant temperature can be written as
follows:

T = THoo +
(Re Pritvk i
Sl D Enen (=
n=1

(o]

+ To Z Fu exp (_ uijnmax '}’nf) (45)

n=1
The fluid temperature distribution calculated
is shown in Fig. 7.

3. NUSSELT NUMBER
Now consider the following heat-transfer
coefficient 4,
q
h= "
T m T T w
And local Nusselt number Nu is defined as
follows:

h2a) 2a ¢
M= = =

(46)

(@T/2y)y=a
Tm - Tw :

(47
In the case of uniform wall heat flux, the mixed-
mean temperature Ty, is

1 @ j? g 1
Tm = (aumcpp L:dy T a umeP) X

(48)
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FiG. 7. Fluid temperature distribution in thermal
entrance region under uniform wall temperature.

And Ty, — Ty is given by the following equation,

(RePr)zvk ~ “1:4_1‘];‘
Ve 2, Gt en( =2 )
n=1

qa
— 72 Dyp Yu(1) exp (—
n=1

Consequently, Nusselt number Nu; becomes

Um

ﬁne). (49)

Umax
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Nul ==
2qalA ’
Re Pri#vk U qa Um_
Foty -+ 6 + BE 2 Cotay exp (2 ) + % > Dual) np (— 1 )
n=1 n=1 (50)
If the Joule heating is neglected, the Nusselt number Nu, is
A
N, = — 242/ (51)

T dcp

and

q = — NOT|oy)y=a.

Hence, Nusselt number Nu, is

N%=2%{ZER¢(I){ ~exp -
oo (amnd {2

ipﬂ%aexp(_;gwf)}.
n=1

G(1) + ‘17“ Z Dy Ya(1) exp (— fn”i; an)
n=1

In the case of uniform wall temperature, Tm —

01

Ty is

Yn

0

Um
+ To Z Fn CXp (— Ymax

n=1

wf) HO) e

(33)
Um T o ~ ’
#max Ynf)] "~ (Re Pri#vkja*cp z Euf (D
n=1}
Um T,
Umax ynf)] " (Re Pr)ivkjaicy
(34)

If the Joule heating is neglected, Nusselt number

Nuj is
< ’ um
> Fubi) exp (— )
N, =2 2m =l N
2 umax b ¢r(1) B’ :
Z Fn Y exp ( Umax ‘yﬂf)
(55)

Fig. 8 shows the relation between local Nusselt

number and £, in the case of no Joule heating.
In this figure, the full lines show the uniform
heat flux and the dotted lines the uniform wall
temperature. Moreover, the case of K =0 is
equivalent to non-conducting Newtonian fluid
flow and the calculated values coincide well
with Sellars er al. {7]. Fig. 9 represents the
relation between local Nusselt number and £
under uniform heat flux. Fig. 10 shows the case
of uniform wall temperature. As compared with
these figures, it should be noted that the Joule
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heating affects so severely the heat transfer that
it must not be ignored. Of course, the effects
of K, M and T,/[(Re Pr)*vk/a®cy] on the heat
transfer must be taken into consideration.

4. CONCLUSION

An analysis was made to determine the heat
transfer by Hartmann’s flow under the con-
ditions of uniform wall heat flux and uniform
wall temperature. Though it is necessary to
calculate numerous eigenvalues and eigen-
functions in order to analyse more precisely the
heat transfer near the inlet, the results obtained
in this paper will be undoubtedly applicable to
the convective heat transfer in the thermal
entrance region.
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APPENDIX
Equation (19) is rewritten here,

(19
Instead of the above equation, Siegel et al. used
the following equation:

ay, 2 u
E;Y? + 3 Ign Siegel —l:n; Yn = 0. (56)

g+ Ba— Yn =0.
max

Thus,

(Bn sicge) (2”“‘“") s 57

3 um
the values of B, are tabulated in Table 1.

Résumé—Cet article concerne une étude théorique de la détermination des caractéristiques des
échanges thermiques dans la zone d’entrée (mise en équilibre thermique) dans le cas d’un écoulement
laminaire de fluide, électriquement conducteur, entre deux plaques paralléles, avec échange de chaleur
a la paroi, et soumis 4 un champ magnétique transversal; cet écoulement est appelé écoulement de

Hartmann.

Les conditions d’échanges thermiques & la paroi considérés ici sont & la fois celles correspondant
a un flux de chaleur pariétal uniforme et celles d’une température de paroi uniforme. On tient compte
dans cette étude de la production d’énergie interne par effet Joule, mais on néglige la dissipation

visqueuse.

La méthode analytique utilisée est analogue & celle choisie par les autres auteurs.

Les caractéristique thermiques de la région de mise en équilibre se rapprochent de celles étudiées par
Siegel pour le régime établi. Les échanges thermiques dans le cas de ’écoulement d’un fluide non
conducteur, étudié en tant que cas particulier, coincident bien avec les résultats de Sellar et des autres.

Ces calculs numériques ont été faits sur la calculatrice KDC-1 de I'Université de Kyoto.

Zusammenfassung—Die Arbeit umfasst eine theoretische Analyse zur Bestimmung der Wirmeiiber-
gangscharakteristik im thermischen Anlaufbereich einer elektrisch leitenden Fliissigkeit bei sogenann-
ter Hartmannstromung. Das Medium stromt dabei, laminar ausgebildet, zwischen zwei parallelen
Platten, an welchen, unter dem Einfluss eines einheitlichen magnetischen Querfeldes, ein Wirmeiiber-
gang erfolgt. Der Wirmeiibergang ist sowohl fiir den Fall gleichbleibender Wirmestromdichte von der
Wand, als auch konstanter Wandtemperatur untersucht. Die innere Joule’sche Wirmeerzeugung ist in
der Analyse beriicksichtigt, nicht jedoch die viskose Dissipation. Die analytische Methode ist analog

der vom Autor in anderen Arbeiten benutzten.

Die Charakteristika fir den Wirmeiibergang im Einlaufgebiet nihern sich jenen der voll ausge-
bildeten Stromung, die Siegel analysierte. Der Wiirmeiibergang bei laminarer Stromung eines nicht-
leitende Mediums, der als Spezialfall analysiert wurde, stimmt gut mit Ergebnissen von Sellars und

anderen iiberein.
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Die numerischen Rechnungen wurden mit Hilfe des KDC-1 (Kyoto University Digital Computer-1)
ausgefiihrt.

Annorangpa—B cratee faercA TeOpeTHUYECKMWI AHANM3 ONpPEJeNeHHs XAPAKTEPHCTHR Mepe-
HOCA Ha BXOJHOM YYACTHKEe HATpeBa IPH YCTAHOBMBHIEMCA JAMAHADHOM TEUEHNN BIIEKTDPO-
HNPOBOLHON MUAKOCTH MEMIY ABYMA TApaJieTbHBIMM TIACTHHAME, KOPEA TEPeHOC Telna
Ha CTeHKe MPOMCXONMT OJ BIMAHNEM IIOCTOAHHONO TOTEPeYHOro IOJfA (Tak HaszbBaeMoe
Tevenne XapTMaHHa). B craTbe paccMaTpHBAIOTCH CHEYIOIIME yCIOBIA TEPEHOCa Tema Ha
CTEHKE : IPH BaJaHHOM IOCTOAHHOM TEILIOBOM NOTOKE Ha CTeHKe M IIPH IOCTOAHHOMH TeM-
peparype CTeHKH. AHAJIH3 BelleTcA ¢ YU8TOM proydena Teria. Braswol puccumanmedt mpe-
nebperaercs, AHaTUTHUECKUH METOJ AHAJIOTHIEH METOMY, HCIOAB3YEMOMY aBTOPOM B IPYTOi
ero pabore.

X apaxTepuCTHRE JIEPEHOCA Telia HAa BXOJHOM Y4YacTKe ONHBKM K XapaKTePHCTHKAM II0-
JHOCTBIO DA3BATOrO TeUeHUA-ciaydalt, pacemorpennbii Cmmmenem. llepemoc Temia npu
JAMUHAPHOM TEUSHKN HOSJIEKTPOIIPOBOTHOM MUAKOCTH, PACCMOTPEHHEI Kak YacTHHH ciyvai,
COBIAZAET CO CAYYASAMH, TPOAHAIMBHPOBAHHLIME CenapcoM U IpyrHMiu,

DTH YcIeHHHe pacuérsl npouspoxuiucek ¢ momompio KIIC-1 (uudposolt BerimcanTenbHOL

' mamuusl Yausepeurera Kuoro mogemu 1).



